Evans Review: Cell wall biosynthesis and the molecular mechanism of plant enlargement
نویسنده
چکیده
Recently discovered reactions allow the green alga Chara corallina (Klien ex. Willd., em. R.D.W.) to grow well without the benefit of xyloglucan or rhamnogalactan II in its cell wall. Growth rates are controlled by polygalacturonic acid (pectate) bound with calcium in the primary wall, and the reactions remove calcium from these bonds when new pectate is supplied. The removal appears to occur preferentially in bonds distorted by wall tension produced by the turgor pressure (P). The loss of calcium accelerates irreversible wall extension if P is above a critical level. The new pectate (now calcium pectate) then binds to the wall and decelerates wall extension, depositing new wall material on and within the old wall. Together, these reactions create a non-enzymatic but stoichiometric link between wall growth and wall deposition. In green plants, pectate is one of the most conserved components of the primary wall, and it is therefore proposed that the acceleration-deceleration-wall deposition reactions are of wide occurrence likely to underlie growth in virtually all green plants. C. corallina is one of the closest relatives of the progenitors of terrestrial plants, and this review focuses on the pectate reactions and how they may fit existing theories of plant growth. Additional keywords: calcium, Chara corallina, gel, growth, irreversible deformation, pectate, pectin, tension, turgor pressure.
منابع مشابه
A review on plant peroxidases
Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...
متن کاملStereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture
Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...
متن کاملPodophyllotoxin: a novel potential natural anticancer agent
Objective: The aim of the present review is to give an overview about the role, biosynthesis, and characteristics of Podophyllotoxin (PTOX) as a potential antitumor agent with particular emphasis on key biosynthesis processes, function of related enzymes and characterization of genes encoding the enzymes. Materials and Methods: Google scholar, PubMed and Scopus were searched for literatures wh...
متن کاملArabidopsis - a powerful model system for plant cell wall research.
Plant cell walls are composites of various carbohydrates, proteins and other compounds. Cell walls provide plants with strength and protection, and also represent the most abundant source of renewable biomass. Despite the importance of plant cell walls, comparatively little is known about the identities of genes and functions of proteins involved in their biosynthesis. The model plant Arabidops...
متن کاملExpansive growth of plant cell walls.
The enlargement of plant cell walls is a key determinant of plant morphogenesis. Current models of the cell wall are reviewed with respect to their ability to account for the mechanism of cell wall enlargement. The concept of primary and secondary wall loosening agents is presented, and the possible roles of expansins, xyloglucan endotransglycosylase, endo-1,4-beta-D-glucanase, and wall synthes...
متن کامل